| 
 Whereas group representations of quantum unitary operators are extensively employed in standard quantum mechanics, the applications of groupoid representations 
are still under development. For example, a description of stochastic quantum mechanics in curved spacetime (Drechsler and Tuckey, 1996) involving a Hilbert bundle is possible in terms of groupoid representations which can indeed be defined on such a Hilbert bundle 
 , but cannot be expressed as the simpler group representations on a Hilbert space  . On the other hand, as in the case of group representations, unitary groupoid representations induce associated C*-algebra representations. In the next subsection we recall some of the basic results concerning groupoid representations and their
associated groupoid *-algebra representations. For further details and recent results in the mathematical theory of groupoid representations one has also available (the succint monograph by Buneci (2003) and references cited therein). 
Let us consider first the relationships between these mainly algebraic concepts and their extended quantum symmetries, also including relevant computation examples; then let us consider several further extensions of symmetry and algebraic topology in the context of Local Quantum Physics/ quantum field theory, symmetry breaking, quantum chromodynamics and the development of novel supersymmetry theories of quantum gravity. In this respect one can also take spacetime `inhomogeneity' as a criterion for the comparisons between physical, partial or local, symmetries: on the one hand, the example of paracrystals reveals Thermodynamic disorder (entropy) within its own spacetime framework, whereas in spacetime itself, whatever the selected model, the inhomogeneity arises
through (super) gravitational effects. More specifically, in the former case one has the technique of the generalized Fourier–Stieltjes transform (along with convolution and Haar measure), and in view of the latter, we may compare the resulting `broken'/paracrystal–type symmetry with that of the supersymmetry predictions for weak gravitational fields (e.g., `ghost' particles) along with the broken supersymmetry in the presence of intense gravitational fields. Another significant extension of quantum symmetries may result from the superoperator algebra/algebroids of Prigogine's quantum superoperators which are
defined only for irreversible, infinite-dimensional systems (Prigogine, 1980). 
Quantum groups  
  Representations  
  weak Hopf algebras  
   quantum groupoids and algebroids Our intention here is to view the latter scheme in terms of a weak Hopf C*–algebroid– and/or other– extended symmetries, which we propose to do, for example, by incorporating the concepts of rigged Hilbert spaces and sectional functions for a small category. We note, however, that an alternative
approach to quantum groupoids has already been reported (Maltsiniotis, 1992), (perhaps also related to noncommutative geometry); this was later expressed in terms of deformation-quantization: the Hopf algebroid deformation of the universal enveloping algebras of Lie algebroids (Xu, 1997) as the classical limit of a quantum `groupoid'; this also parallels the introduction of quantum `groups' as the deformation-quantization of Lie bialgebras. Furthermore, such a Hopf algebroid approach (Lu, 1996) leads to categories of Hopf algebroid modules (Xu, 1997) which are monoidal, whereas the links between Hopf algebroids and monoidal bicategories were investigated by Day and Street (1997). 
As defined under the following heading on groupoids, let 
  be a locally compact groupoid endowed with a (left) Haar system, and let 
  be the convolution  –algebra (we append   with   if necessary, so that   is unital). Then consider such a groupoid representation 
  that respects a compatible measure   on 
  (cf Buneci, 2003). On taking a state   on  , we assume a parametrization 
  | 
(0.1) | 
 
 
 
Furthermore, each 
  is considered as a rigged Hilbert space Bohm and Gadella (1989), that is, one also has the following nested inclusions: 
  | 
(0.2) | 
 
 
 
in the usual manner, where   is a dense subspace of 
  with the appropriate locally convex topology, and 
  is the space of continuous antilinear functionals of   . For each  , we require   to be invariant under   and 
  is a continuous representation of 
  on   . With these conditions, representations of (proper) quantum groupoids that are derived for weak C*–Hopf algebras (or algebroids) modeled on rigged Hilbert spaces could be suitable generalizations in the framework of a Hamiltonian generated semigroup of time evolution of a quantum system via integration of Schrödinger's equation 
  as studied in the case of Lie groups (Wickramasekara and Bohm, 2006). The adoption of the rigged Hilbert spaces is also based on how the latter are recognized as reconciling the Dirac and von Neumann approaches to quantum theories (Bohm and Gadella, 1989). 
Next, let 
  be a locally compact Hausdorff groupoid and   a locally compact Hausdorff space. (
  will be called a locally compact groupoid, or lc- groupoid for short). In order to achieve a small C*–category we follow a suggestion of A. Seda (private communication) by using a general principle in the context of Banach bundles (Seda, 1976, 982)). Let 
  be a continuous, open and surjective map. For each 
 , consider the fibre 
 , and set 
  equipped with a uniform norm 
  . Then we set 
  . We form a Banach bundle 
  as follows. Firstly, the projection is defined via the typical fibre 
  . Let 
  denote the continuous complex valued functions on 
  with compact support. We obtain a sectional function 
  defined via restriction as 
  . Commencing from the vector space 
 , the set 
  is dense in 
  . For each 
 , the function 
  is continuous on  , and each 
  is a continuous section of 
  . These facts follow from Seda (1982, theorem 1). Furthermore, under the convolution product  , the space 
  forms an associative algebra over 
  (cf. Seda, 1982, Theorem 3). 
Recall that a groupoid 
  is, loosely speaking, a small category with inverses over its set of objects 
  . One often writes 
  for the set of morphisms in 
  from   to   . A topological groupoid consists of a space 
 , a distinguished subspace 
 , called the space of objects of 
 , together with maps 
![$\displaystyle r,s :  \xymatrix{ {\mathsf{G}}\ar@<1ex>[r]^r \ar[r]_s & {\mathsf{G}}^{(0)} }$ $\displaystyle r,s :  \xymatrix{ {\mathsf{G}}\ar@<1ex>[r]^r \ar[r]_s & {\mathsf{G}}^{(0)} }$](https://images.physicslibrary.org/cache/objects/514/l2h/img67.png)  | 
(0.3) | 
 
 
 
called the range and source maps respectively, together with a law of composition 
  | 
(0.4) | 
 
 
 
such that the following hold :  
- (1)
 
- 
  , for all 
  . 
- (2)
 
- 
  , for all 
  . 
- (3)
 
- 
  , for all 
  . 
- (4)
 
- 
  . 
- (5)
 
- Each 
  has a two–sided inverse 
  with 
  .
Furthermore, only for topological groupoids the inverse map needs be continuous. It is usual to call 
  the set of objects of 
  . For 
 , the set of arrows 
  forms a group 
 , called the isotropy group of 
  at  . 
 
 
Thus, as is well kown, a topological groupoid is just a groupoid internal to the category of topological spaces and continuous maps. The notion of internal groupoid has proved significant in a number of fields, since groupoids generalise bundles of groups, group actions, and equivalence relations. For a further study of groupoids we refer the reader to Brown (2006). 
Several examples of groupoids are: 
- (a) locally compact groups, transformation groups, and any group in general (e.g. [59]
 
- (b) equivalence relations
 
- (c) tangent bundles
 
- (d) the tangent groupoid (e.g. [4])
 
- (e) holonomy groupoids for foliations (e.g. [4])
 
- (f) Poisson groupoids (e.g. [81])
 
- (g) graph groupoids (e.g. [47, 64]).
 
 
As a simple example of a groupoid, consider (b) above. Thus, let R be an equivalence relationhttps://physicslibrary.org/encyclopedia/Bijective.html on a set X. Then R is a groupoid under the following operations: 
 . Here, 
 , (the diagonal of 
  ) and 
 . 
So   = 
 . When 
 , R is called a trivial groupoid. A special case of a trivial groupoid is 
    
 . (So every i is equivalent to every j). Identify 
  with the matrix unit  . Then the groupoid   is just matrix multiplication except that we only multiply 
  when  , and 
 . We do not really lose anything by restricting the multiplication, since the pairs 
  excluded from groupoid multiplication just give the 0 product in normal algebra anyway. 
Definition 0.1   For a groupoid 
   to be a  locally compact groupoid means that 
   is required to be  a (second countable) locally compact Hausdorff space, and the product and also inversion maps are required to be continuous. Each 
   as well as the unit space 
   is closed in 
  .  
Remark 0.2   What replaces the left Haar measure on 
   is a system of measures    (
  ), where    is a positive  regular Borel measure on 
   with dense support. In addition, the    's are required to vary continuously (when integrated against 
   and to form an invariant family in the sense that for each x, the map 
   is a measure preserving  homeomorphism from 
   onto 
  . Such a system 
   is called a  left Haar system for the locally compact groupoid 
  .  
This is defined more precisely next. 
![$\displaystyle \xymatrix{ {\mathsf{G}}\ar@<1ex>[r]^r \ar[r]_s & {\mathsf{G}}^{(0)}}=X$ $\displaystyle \xymatrix{ {\mathsf{G}}\ar@<1ex>[r]^r \ar[r]_s & {\mathsf{G}}^{(0)}}=X$](https://images.physicslibrary.org/cache/objects/514/l2h/img120.png)  | 
(0.5) | 
 
 
 
be a locally compact, locally trivial topological groupoid with its transposition into transitive (connected) components. Recall that for  , the costar of   denoted 
  is defined as the closed set 
 , whereby
  | 
(0.6) | 
 
 
 
is a principal 
 –bundle relative to fixed base points 
  . Assuming all relevant sets are locally compact, then following Seda (1976), a (left) Haar system on 
  denoted 
  (for later purposes), is defined to comprise of i) a measure   on 
 , ii) a measure   on   and iii) a measure   on 
  such that for every Baire set   of 
 , the following hold on setting 
  :
| (1) | 
 
  is measurable. | 
 
| (2) | 
 
  . | 
 
| (3) | 
 
 , for all 
  and 
  . | 
 
 
The presence of a left Haar system on 
  has important topological implications: it requires that the range map 
  is open. For such a 
  with a left Haar system, the vector space 
  is a convolution *–algebra, where for 
 : 
with
One has 
  to be the enveloping C*–algebra of 
  (and also representations are required to be continuous in the inductive limit topology). Equivalently, it is the completion of 
  where 
  is the universal representation of 
 . For example, if 
 , then 
  is just the finite dimensional algebra 
 , the span of the  s. 
There exists (cf. [7]) a measurable Hilbert bundle 
  with 
  and a G-representation L on  . Then, for every pair   of square integrable sections of  , it is required that the function 
  be  –measurable. The representation   of 
  is then given by: 
 tex2html_wrap_inline . 
The triple 
  is called a measurable 
 –Hilbert bundle. 
- 1
 
- E. M. Alfsen and F. W. Schultz: Geometry of State Spaces of Operator Algebras, Birkhäuser, Boston–Basel–Berlin (2003).
 
- 2
 
- I. C. Baianu : Categories, Functors and Automata Theory: A Novel Approach to Quantum Automata through Algebraic–Topological Quantum Computations., Proceed. 4th Intl. Congress LMPS, (August-Sept. 1971).
 
- 3
 
- I. C. Baianu, J. F. Glazebrook and R. Brown.: A Non–Abelian, Categorical Ontology of Spacetimes and Quantum Gravity., Axiomathes 17,(3-4): 353-408(2007).
 
- 4
 
- I.C.Baianu, R. Brown J.F. Glazebrook, and G. Georgescu, Towards Quantum Non–Abelian Algebraic Topology. in preparation, (2008).
 
- 5
 
- F.A. Bais, B. J. Schroers and J. K. Slingerland: Broken quantum symmetry and confinement phases in planar physics, Phys. Rev. Lett. 89 No. 18 (1–4): 181–201 (2002).
 
- 6
 
- J.W. Barrett.: Geometrical measurements in three-dimensional quantum gravity. Proceedings of the Tenth Oporto Meeting on Geometry, Topology and Physics (2001). Intl. J. Modern Phys. A 18 , October, suppl., 97–113 (2003).
 
- 7
 
- M. R. Buneci.: Groupoid Representations, (orig. title “Reprezentari de Grupoizi”), Ed. Mirton: Timishoara (2003).
 
- 8
 
- M. Chaician and A. Demichev: Introduction to Quantum Groups, World Scientific (1996).
 
- 9
 
- Coleman and De Luccia: Gravitational effects on and of vacuum decay., Phys. Rev. D 21: 3305 (1980).
 
- 10
 
- L. Crane and I.B. Frenkel. Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases. Topology and physics. J. Math. Phys. 35 (no. 10): 5136–5154 (1994).
 
- 11
 
- W. Drechsler and P. A. Tuckey: On quantum and parallel transport in a Hilbert bundle over spacetime., Classical and Quantum Gravity, 13:611-632 (1996). doi: 10.1088/0264–9381/13/4/004
 
- 12
 
- V. G. Drinfel'd: Quantum groups, In Proc. Intl. Congress of Mathematicians, Berkeley 1986, (ed. A. Gleason), Berkeley, 798-820 (1987).
 
- 13
 
- G. J. Ellis: Higher dimensional crossed modules of algebras, J. of Pure Appl. Algebra 52 (1988), 277-282.
 
- 14
 
- P.. I. Etingof and A. N. Varchenko, Solutions of the Quantum Dynamical Yang-Baxter Equation and Dynamical Quantum Groups, Comm.Math.Phys., 196: 591-640 (1998).
 
- 15
 
- P. I. Etingof and A. N. Varchenko: Exchange dynamical quantum groups, Commun. Math. Phys. 205 (1): 19-52 (1999)
 
- 16
 
- P. I. Etingof and O. Schiffmann: Lectures on the dynamical Yang–Baxter equations, in Quantum Groups and Lie Theory (Durham, 1999), pp. 89-129, Cambridge University Press, Cambridge, 2001.
 
- 17
 
- B. Fauser: A treatise on quantum Clifford Algebras. Konstanz, Habilitationsschrift.
 
arXiv.math.QA/0202059 (2002). 
- 18
 
- B. Fauser: Grade Free product Formulae from Grassman–Hopf Gebras. Ch. 18 in R. Ablamowicz, Ed., Clifford Algebras: Applications to Mathematics, Physics and Engineering, Birkhäuser: Boston, Basel and Berlin, (2004).
 
- 19
 
- J. M. G. Fell.: The Dual Spaces of C*–Algebras., Transactions of the American Mathematical Society, 94: 365–403 (1960).
 
- 20
 
- F.M. Fernandez and E. A. Castro.: (Lie) Algebraic Methods in Quantum Chemistry and Physics., Boca Raton: CRC Press, Inc (1996).
 
- 21
 
- R. P. Feynman: Space–Time Approach to Non–Relativistic Quantum Mechanics, Reviews of Modern Physics, 20: 367–387 (1948). [It is also reprinted in (Schwinger 1958).]
 
- 22
 
- A. Fröhlich: Non–Abelian Homological Algebra. I. Derived functors and satellites., Proc. London Math. Soc., 11(3): 239–252 (1961).
 
- 23
 
- R. Gilmore: Lie Groups, Lie Algebras and Some of Their Applications., Dover Publs., Inc.: Mineola and New York, 2005.
 
- 24
 
- P. Hahn: Haar measure for measure groupoids., Trans. Amer. Math. Soc. 242: 1–33(1978).
 
- 25
 
- P. Hahn: The regular representations of measure groupoids., Trans. Amer. Math. Soc. 242:34–72(1978).
 
- 26
 
- R. Heynman and S. Lifschitz. 1958. Lie Groups and Lie Algebras., New York and London: Nelson Press.
 
- 27
 
- C. Heunen, N. P. Landsman, B. Spitters.: A topos for algebraic quantum theory, (2008) 
![$arXiv:0709.4364v2 [quant–ph]$ $arXiv:0709.4364v2 [quant–ph]$](https://images.physicslibrary.org/cache/objects/514/l2h/img172.png)  
 
  
 
 
 |