Physics Library
 An open source physics library
Encyclopedia | Forums | Docs | Random | Template Test |  
Login
create new user
Username:
Password:
forget your password?
Main Menu
Sections

Meta

Talkback

Downloads

Information
Euler 313 sequence (Definition)

For more info on Euler Sequences, notation and convention see the generic entry on Euler angle sequences.

$R_{313}(\phi, \theta, \psi) = R_3(\psi) R_1(\theta) R_3(\phi) $

The rotation matrices are

$\displaystyle R_3(\psi) = \left[ \begin{array}{ccc} c_{\psi} & s_{\psi} & 0 \ -s_{\psi} & c_{\psi} & 0 \ 0 & 0 & 1 \end{array} \right]$ (1)
$\displaystyle R_1(\theta) = \left[ \begin{array}{ccc} 1 & 0 & 0 \ 0 & c_{\theta} & s_{\theta} \ 0 & -s_{\theta} & c_{\theta} \end{array} \right]$ (2)
$\displaystyle R_3(\phi) = \left[ \begin{array}{ccc} c_{\phi} & s_{\phi} & 0 \ -s_{\phi} & c_{\phi} & 0 \ 0 & 0 & 1 \end{array} \right]$ (3)
Carrying out the multiplication from right to left

$R_1(\theta)R_3(\phi) = \left[ \begin{array}{ccc} 1 & 0 & 0 \ 0 & c_{\theta} &... ... s_{\theta} s_{\phi} & -s_{\theta} c_{\phi} & c_{\theta} \end{array} \right] $

Finaly leaving us with the Euler 313 sequence

$R_3(\psi)R_1(\theta)R_3(\phi) = \left[ \begin{array}{ccc} c_{\psi} c_{\phi} - s... ... s_{\theta} s_{\phi} & -s_{\theta} c_{\phi} & c_{\theta} \end{array} \right] $



"Euler 313 sequence" is owned by bloftin.
View style:

Cross-references: matrices, Euler angle sequences
There are 2 references to this object.

This is version 1 of Euler 313 sequence, born on 2005-08-02.
Object id is 44, canonical name is Euler313Sequence.
Accessed 1099 times total.

Classification:
Physics Classification45.40.-f (Dynamics and kinematics of rigid bodies)
Pending Errata and Addenda
None.
Discussion
Style: Expand: Order:

No messages.

Testing some escape charachters for html category with a generator has an injective cogenerator" now escape ” with "