| A compact quantum group,  is defined as a particular case of a locally compact quantum group  when the object space of the latter  is a compact topological space (instead of being a locally compact one). Bibliography ![$[1]$ $[1]$](http://images.physicslibrary.org/cache/objects/311/l2h/img4.png) ABE, E., Hopf Algebras, Cambridge University Press, 1977.
 ![$[2]$ $[2]$](http://images.physicslibrary.org/cache/objects/311/l2h/img5.png) BAAJ, S., SKANDALIS, G., Unitaires multiplicatifs et dualité pour les produits croisés de C*-algébres, Ann. scient. Ec. Norm. Sup., 4e série, t. 26 (1993), 425-488.
 ![$[3]$ $[3]$](http://images.physicslibrary.org/cache/objects/311/l2h/img6.png) CONWAY, J. B., A Course in Functional Analysis, Springer-Verlag, New York, 1985.
 ![$[4]$ $[4]$](http://images.physicslibrary.org/cache/objects/311/l2h/img7.png) DIJKHUIZEN, M.S., KOORNWINDER, T.H., CQG algebras : a direct algebraic approach to quantum groups, Lett. Math. Phys. 32 (1994), 315-330. 
 ![$[5]$ $[5]$](http://images.physicslibrary.org/cache/objects/311/l2h/img8.png) DIXMIER, J., C*-algebras, North-Holland Publishing Company, Amsterdam, 1982. 
 ![$[6]$ $[6]$](http://images.physicslibrary.org/cache/objects/311/l2h/img9.png) ENOCK, M., SCHWARTZ, J.-M., Kac Algebras and duality of Locally Compact groups, Springer-Verlag, Berlin (1992). 
 ![$[7]$ $[7]$](http://images.physicslibrary.org/cache/objects/311/l2h/img10.png) EFFROS, E.G., RUAN, Z.-J., Discrete Quantum Groups I. The Haar measure, Int. J. of Math. (1994), 681-723. 
 ![$[8]$ $[8]$](http://images.physicslibrary.org/cache/objects/311/l2h/img11.png) HOFMANN, K.H., Elements of compact semi-groups, Charles E. Merill Books Inc. Columbus, Ohio (1996). 
 ![$[9]$ $[9]$](http://images.physicslibrary.org/cache/objects/311/l2h/img12.png) HOLLEVOET, J., Lokaal compacte quantum-semigroepen : Representaties en Pontryagin-dualiteit, Ph.D. Thesis, K.U.Leuven, 1994. 
 ![$[10]$ $[10]$](http://images.physicslibrary.org/cache/objects/311/l2h/img13.png) HOLLEVOET, J., Pontryagin Duality for a Class of Locally Compact Quantum Groups, Math. Nachrichten 176 (1995), 93-110. 
 ![$[11]$ $[11]$](http://images.physicslibrary.org/cache/objects/311/l2h/img14.png) KIRCHBERG, E., Discrete Quantum Groups, talk at Oberwolfach, 1994. 
 ![$[12]$ $[12]$](http://images.physicslibrary.org/cache/objects/311/l2h/img15.png) KUSTERMANS, J., C*-algebraic Quantum Groups arising from Algebraic Quantum Groups, Ph.D. Thesis, K.U.Leuven, 1997. 
 ![$[13]$ $[13]$](http://images.physicslibrary.org/cache/objects/311/l2h/img16.png) KUSTERMANS, J., VAN DAELE, A., C*-algebraic Quantum Groups arising from Algebraic Quantum Groups, Int. J. of Math. 8 (1997), 1067-1139. 
 ![$[14]$ $[14]$](http://images.physicslibrary.org/cache/objects/311/l2h/img17.png) LANCE, E.C., An explicit description of the fundamental unitary for SU(2)q, Commun. Math. Phys. 164 (1994), 1-15. 
 ![$[15]$ $[15]$](http://images.physicslibrary.org/cache/objects/311/l2h/img18.png) DE MAGELHAES, I.V., Hopf-C*-algebras and locally compact groups, Pacific J. Math (2) 36 (1935), 448-463. 
 ![$[16]$ $[16]$](http://images.physicslibrary.org/cache/objects/311/l2h/img19.png) MASUDA, M., NAKAGAMI, Y., A von Neumann algebra Framework for the Duality of Quantum Groups. Publications of the RIMS Kyoto University 30 (1994), 799-850. 
 ![$[17]$ $[17]$](http://images.physicslibrary.org/cache/objects/311/l2h/img20.png) MASUDA, M., A C*-algebraic framework for the quantum groups, talk at Warsaw workshop on Quantum Groups and Quantum Spaces, 1995. 
 ![$[18]$ $[18]$](http://images.physicslibrary.org/cache/objects/311/l2h/img21.png) MASUDA, M., NAKAGAMI, Y., WORONOWICZ, , S.L. (in preparation). 
 ![$[19]$ $[19]$](http://images.physicslibrary.org/cache/objects/311/l2h/img22.png) SHEU, A.J.L., Compact Quantum Groups and groupoid C*-Algebras, J. Funct. Analysis 144 (1997), 371-393. 
 ![$[20]$ $[20]$](http://images.physicslibrary.org/cache/objects/311/l2h/img23.png) SWEEDLER, M.E., Hopf Algebras, W.A. Benjamin, inc., New York, 1969. 
 ![$[21]$ $[21]$](http://images.physicslibrary.org/cache/objects/311/l2h/img24.png) TOMIYAMA, J., Applications of Fubini type theorems to the tensor product of C*-algebras, Tokohu Math. J. 19 (1967), 213-226. 
 ![$[22]$ $[22]$](http://images.physicslibrary.org/cache/objects/311/l2h/img25.png) VAN DAELE, A., Dual Pairs of Hopf *-algebras, Bull. London Math. Soc. 25 (1993), 209-230. 
 ![$[23]$ $[23]$](http://images.physicslibrary.org/cache/objects/311/l2h/img26.png) VAN DAELE, A., Multiplier Hopf Algebras, Trans. Am. Math. Soc. 342 (1994), 917-932. ![$[24]$ $[24]$](http://images.physicslibrary.org/cache/objects/311/l2h/img27.png) VAN DAELE, A., The Haar Measure on a Compact Quantum Group, Proc. Amer. Math. Soc. 123 (1995), 3125-3128. ![$[25]$ $[25]$](http://images.physicslibrary.org/cache/objects/311/l2h/img28.png) VAN DAELE, A., Discrete Quantum Groups, Journal of Algebra 180 (1996), 431-444. ![$[26]$ $[26]$](http://images.physicslibrary.org/cache/objects/311/l2h/img29.png) VAN DAELE, A., An Algebraic Framework for Group Duality, preprint K.U.Leuven (1996), to appear in Advances of Mathematics. 
 ![$[27]$ $[27]$](http://images.physicslibrary.org/cache/objects/311/l2h/img30.png) VAN DAELE, A., Multiplier Hopf Algebras and Duality, Proceedings of the workshop on Quantum Groups and Quantum Spaces in Warsaw (1995), Polish Academy of sciences Warszawa 40 (1997), 51-58. 
 ![$[28]$ $[28]$](http://images.physicslibrary.org/cache/objects/311/l2h/img31.png) VAN DAELE, A., The Haar measure on finite quantum groups, Proc. A.M.S. 125 (1997), 3489-3500. 
 ![$[29]$ $[29]$](http://images.physicslibrary.org/cache/objects/311/l2h/img32.png) VAN DAELE, A., WANG, S., Universal Quantum Groups, Int. J. of Math. (1996), 255-263. ![$[30]$ $[30]$](http://images.physicslibrary.org/cache/objects/311/l2h/img33.png) WANG, S., Krein Duality for Compact Quantum Groups, J. Math. Phys. 38 (1997), 524-534. 31. WORONOWICZ, S.L., Twisted
  group. An example of non-commutative differential calculus. Publ. RIMS Kyoto Univ. 23 No. 1 (1987), 117-181. 
 ![$[32]$ $[32]$](http://images.physicslibrary.org/cache/objects/311/l2h/img35.png) WORONOWICZ, S.L., Compact matrix Pseudogroups, Commun. Math. Phys. 111 (1987), 613-665. 33. WORONOWICZ, S.L., Tannaka-Krein duality for compact matrix pseudogroups. Twisted
  groups, Invent. Math. 93 (1988) 35-76. ![$[34]$ $[34]$](http://images.physicslibrary.org/cache/objects/311/l2h/img37.png) WORONOWICZ, S.L., A remark on Compact Matrix Quantum Groups, Lett. Math. Phys. 21 (1991), 35-39. ![$[35]$ $[35]$](http://images.physicslibrary.org/cache/objects/311/l2h/img38.png) WORONOWICZ, S.L., Compact Quantum Groups, Preprint University ofWarszawa (1992). To appear. 36. MAES, A. and VanDAELE, A. 1998. Notes on Compact Quantum Groups.,
  , 43 pp.
 
 |