This is a topic entry that introduces quantum operator algebras and presents concisely the important roles they play in quantum field theories.
Definition 0.1   Quantum operator algebras (QOA) in quantum field theories are defined as the algebras of  observable operators, and as such, they are also related to the von Neumann algebra; quantum operators are usually defined on  Hilbert spaces, or in some QFTs on  Hilbert space bundles or other similar families of spaces.  
Remark 0.1   representations of Banach  -algebras– that are defined on Hilbert spaces– are closely related to C* -algebra representations which provide a useful approach to defining  quantum space-times.  
Important examples of quantum operators are: the Hamiltonian operator (or Schrödinger operator), the position and momentum operators, Casimir operators, unitary operators and spin operators. The observable operators are also self-adjoint. More general operators were recently defined, such as Prigogine's superoperators. 
Another development in quantum theories was the introduction of Frechét nuclear spaces or `rigged' Hilbert spaces (Hilbert space bundles). The following sections define several types of quantum operator algebras that provide the foundation of modern quantum field theories in mathematical physics. 
Quantum theories adopted a new lease of life post 1955 when von Neumann beautifully re-formulated quantum mechanics (QM) and quantum theories (QT) in the mathematically rigorous context of Hilbert spaces and operator algebras defined over such spaces. From a current physics perspective, von Neumann' s approach to quantum mechanics has however done much more: it has not only paved the way to expanding the role of symmetry in physics, as for example with the Wigner-Eckhart theorem and its applications, but also revealed the fundamental importance in quantum physics of the state space geometry of quantum operator algebras. 
Let   denote a complex (separable) Hilbert space. A von Neumann algebra 
  acting on   is a subset of the algebra of all bounded operators 
  such that: 
- (i) 
  is closed under the adjoint operation (with the adjoint of an element   denoted by  ). 
- (ii) 
  equals its bicommutant, namely:
  | 
(0.1) | 
 
 
 
 
 
If one calls a commutant of a set 
  the special set of bounded operators on 
  which commute with all elements in 
 , then this second condition implies that the commutant of the commutant of 
  is again the set 
 . 
On the other hand, a von Neumann algebra 
  inherits a unital subalgebra from 
 , and according to the first condition in its definition 
 , it does indeed inherit a  -subalgebra structure as further explained in the next section on C* -algebras. Furthermore, one also has available a notable `bicommutant theorem' which states that: “
  is a von Neumann algebra if and only if 
  is a  -subalgebra of 
 , closed for the smallest topology defined by continuous maps 
  for all 
  where   denotes the inner product defined on   ”. 
For a well-presented treatment of the geometry of the state spaces of quantum operator algebras, the reader is referred to Aflsen and Schultz (2003; []). 
First, a unital associative algebra consists of a linear space   together with two linear maps:
satisfying the conditions
This first condition can be seen in terms of a commuting diagram :
  | 
(0.4) | 
 
 
 
Next suppose we consider `reversing the arrows', and take an algebra   equipped with a linear homorphisms 
 , satisfying, for   : 
We call   a comultiplication, which is said to be coasociative in so far that the following diagram commutes 
  | 
(0.6) | 
 
 
 
There is also a counterpart to  , the counity map 
  satisfying 
  | 
(0.7) | 
 
 
 
A bialgebra 
  is a linear space   with maps 
  satisfying the above properties. 
Now to recover anything resembling a group structure, we must append such a bialgebra with an antihomomorphism 
 , satisfying 
 , for   . This map is defined implicitly via the property : 
  | 
(0.8) | 
 
 
 
We call   the antipode map. 
A Hopf algebra is then a bialgebra 
  equipped with an antipode map  . 
Commutative and non-commutative Hopf algebras form the backbone of quantum `groups' and are essential to the generalizations of symmetry. Indeed, in most respects a quantum `group' is closely related to its dual Hopf algebra; in the case of a finite, commutative quantum group its dual Hopf algebra is obtained via Fourier transformation of the group elements. When Hopf algebras are actually associated with their dual, proper groups of matrices, there is considerable scope for their representations on both finite and infinite dimensional Hilbert spaces. 
Recall that a groupoid 
  is, loosely speaking, a small category with inverses over its set of objects 
  . One often writes 
  for the set of morphisms in 
  from   to   . A topological groupoid consists of a space 
 , a distinguished subspace 
 , called the space of objects of 
 , together with maps 
![$\displaystyle r,s~:~ \xymatrix{ {\mathsf{G}}\ar@<1ex>[r]^r \ar[r]_s & {\mathsf{G}}^{(0)} }$ $\displaystyle r,s~:~ \xymatrix{ {\mathsf{G}}\ar@<1ex>[r]^r \ar[r]_s & {\mathsf{G}}^{(0)} }$](http://images.physicslibrary.org/cache/objects/571/l2h/img60.png)  | 
(0.9) | 
 
 
 
called the range and source maps respectively, together with a law of composition
  | 
(0.10) | 
 
 
 
such that the following hold : 
- (1)
 
- 
  , for all 
  . 
- (2)
 
- 
  , for all 
  . 
- (3)
 
- 
  , for all 
  . 
- (4)
 
- 
  . 
- (5)
 
- Each 
  has a two–sided inverse 
  with 
  . Furthermore, only for topological groupoids the inverse map needs be continuous. It is usual to call 
  the set of objects of 
  . For 
 , the set of arrows 
  forms a group 
 , called the isotropy group of 
  at  . 
 
Thus, as it is well kown, a topological groupoid is just a groupoid internal to the category of topological spaces and continuous maps. The notion of internal groupoid has proved significant in a number of fields, since groupoids generalise bundles of groups, group actions, and equivalence relations. For a further study of groupoids we refer the reader to Brown (2006). 
Several examples of groupoids are: 
- (a) locally compact groups, transformation groups , and any group in general (e.g. [59]
 
- (b) equivalence relations
 
- (c) tangent bundles
 
- (d) the tangent groupoid
 
- (e) holonomy groupoids for foliations
 
- (f) Poisson groupoids
 
- (g) graph groupoids.
 
 
As a simple, helpful example of a groupoid, consider (b) above. Thus, let R be an equivalence relationhttp://physicslibrary.org/encyclopedia/Bijective.html on a set X. Then R is a groupoid under the following operations: 
 . Here, 
 , (the diagonal of 
  ) and 
 . 
Therefore,   = 
 . When 
 , R is called a trivial groupoid. A special case of a trivial groupoid is 
    
 . (So every i is equivalent to every j). Identify 
  with the matrix unit  . Then the groupoid   is just matrix multiplication except that we only multiply 
  when  , and 
 . We do not really lose anything by restricting the multiplication, since the pairs 
  excluded from groupoid multiplication just give the 0 product in normal algebra anyway. For a groupoid 
  to be a locally compact groupoid means that 
  is required to be a (second countable) locally compact Hausdorff space, and the product and also inversion maps are required to be continuous. Each 
  as well as the unit space 
  is closed in 
 . What replaces the left Haar measure on 
  is a system of measures   (
 ), where   is a positive regular Borel measure on 
  with dense support. In addition, the 
  's are required to vary continuously (when integrated against 
  and to form an invariant family in the sense that for each x, the map 
  is a measure preserving homeomorphism from 
  onto 
 . Such a system 
  is called a left Haar system for the locally compact groupoid 
 . 
This is defined more precisely in the next subsection. 
Let 
![$\displaystyle \xymatrix{ {\mathsf{G}}\ar@<1ex>[r]^r \ar[r]_s & {\mathsf{G}}^{(0)}}=X$ $\displaystyle \xymatrix{ {\mathsf{G}}\ar@<1ex>[r]^r \ar[r]_s & {\mathsf{G}}^{(0)}}=X$](http://images.physicslibrary.org/cache/objects/571/l2h/img113.png)  | 
(0.11) | 
 
 
 
be a locally compact, locally trivial topological groupoid with its transposition into transitive (connected) components. Recall that for  , the costar of   denoted 
  is defined as the closed set 
 , whereby
  | 
(0.12) | 
 
 
 
is a principal 
 –bundle relative to fixed base points 
  . Assuming all relevant sets are locally compact, then following Seda (1976), a (left) Haar system on 
  denoted 
  (for later purposes), is defined to comprise of i) a measure   on 
 , ii) a measure   on   and iii) a measure   on 
  such that for every Baire set   of 
 , the following hold on setting 
  :
| (1) | 
 
  is measurable. | 
 
| (2) | 
 
  . | 
 
| (3) | 
 
 , for all 
  and 
  . | 
 
 
The presence of a left Haar system on 
  has important topological implications: it requires that the range map 
  is open. For such a 
  with a left Haar system, the vector space 
  is a convolution *–algebra, where for 
 : 
with 
One has 
  to be the enveloping C*–algebra of 
  (and also representations are required to be continuous in the inductive limit topology). Equivalently, it is the completion of 
  where 
  is the universal representation of 
 . For example, if 
  , then 
  is just the finite dimensional algebra 
 , the span of the   's. 
There exists a measurable Hilbert bundlehttp://physicslibrary.org/encyclopedia/HilbertBundle.html 
  with 
  and a G-representation L on  . Then, for every pair   of square integrable sections of  , it is required that the function 
  be  –measurable. The representation   of 
  is then given by: 
 . 
The triple 
  is called a measurable 
 –Hilbert bundle. 
- 1
 
- E. M. Alfsen and F. W. Schultz: Geometry of State Spaces of Operator Algebras, Birkh'́auser, Boston–Basel–Berlin (2003).
 
- 2
 
- I. Baianu : Categories, Functors and Automata Theory: A Novel Approach to Quantum Automata through Algebraic–Topological Quantum Computations., Proceed. 4th Intl. Congress LMPS, (August-Sept. 1971).
 
- 3
 
- I.C. Baianu, N. Boden and D. Lightowlers.1981. NMR Spin–Echo Responses of Dipolar–Coupled Spin–1/2 Triads in Solids., J. Magnetic Resonance, 43:101–111.
 
- 4
 
- I. C. Baianu, J. F. Glazebrook and R. Brown.: A Non–Abelian, Categorical Ontology of Spacetimes and Quantum Gravity., Axiomathes 17,(3-4): 353-408(2007).
 
- 5
 
- F.A. Bais, B. J. Schroers and J. K. Slingerland: Broken quantum symmetry and confinement phases in planar physics, Phys. Rev. Lett. 89 No. 18 (1–4): 181-201 (2002).
 
- 6
 
- J.W. Barrett.: Geometrical measurements in three-dimensional quantum gravity. Proceedings of the Tenth Oporto Meeting on Geometry, Topology and Physics (2001). Intl. J. Modern Phys. A 18 , October, suppl., 97-113 (2003)
 
- 7
 
- M. Chaician and A. Demichev: Introduction to Quantum Groups, World Scientific (1996).
 
- 8
 
- Coleman and De Luccia: Gravitational effects on and of vacuum decay., Phys. Rev. D 21: 3305 (1980).
 
- 9
 
- A. Connes: Noncommutative Geometry, Academic Press 1994.
 
- 10
 
- L. Crane and I.B. Frenkel. Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases. Topology and physics. J. Math. Phys. 35 (no. 10): 5136-5154 (1994).
 
- 11
 
- W. Drechsler and P. A. Tuckey: On quantum and parallel transport in a Hilbert bundle over spacetime., Classical and Quantum Gravity, 13:611–632 (1996). doi: 10.1088/0264–9381/13/4/004
 
- 12
 
- V. G. Drinfel'd: Quantum groups, In Proc. Int. Cong. of Mathematicians, Berkeley 1986, (ed. A. Gleason), Berkeley, 798–820 (1987).
 
- 13
 
- G. J. Ellis: Higher dimensional crossed modules of algebras, J. of Pure Appl. Algebra 52 (1988), 277–282.
 
- 14
 
- P.. I. Etingof and A. N. Varchenko, Solutions of the Quantum Dynamical Yang-Baxter Equation and Dynamical Quantum Groups, Comm.Math.Phys., 196: 591-640 (1998)
 
- 15
 
- P. I. Etingof and A. N. Varchenko: Exchange dynamical quantum groups, Commun. Math. Phys. 205 (1): 19–52 (1999)
 
- 16
 
- P. I. Etingof and O. Schiffmann: Lectures on the dynamical Yang–Baxter equations, in Quantum Groups and Lie Theory (Durham, 1999), pp. 89–129, Cambridge University Press, Cambridge, 2001.
 
- 17
 
- B. Fauser: A treatise on quantum Clifford Algebras. Konstanz, Habilitationsschrift. 
  (2002). 
- 18
 
- B. Fauser: Grade Free product Formulae from Grassman–Hopf Gebras. Ch. 18 in R. Ablamowicz, Ed., Clifford Algebras: Applications to Mathematics, Physics and Engineering, Birkhäuser: Boston, Basel and Berlin, (2004).
 
- 19
 
- J. M. G. Fell. 1960. “The Dual Spaces of C*–Algebras.”, Transactions of the American Mathematical Society, 94: 365–403 (1960).
 
- 20
 
- F.M. Fernandez and E. A. Castro.: (Lie) Algebraic Methods in Quantum Chemistry and Physics., Boca Raton: CRC Press, Inc (1996).
 
- 21
 
- R. P. Feynman: Space–Time Approach to Non–Relativistic Quantum Mechanics, Reviews of Modern Physics, 20: 367-387 (1948). [It is also reprinted in (Schwinger 1958).]
 
- 22
 
- A. Fröhlich, Non-Abelian Homological Algebra. I. Derived functors and satellites., Proc. London Math. Soc. (3), 11: 239–252 (1961).
 
- 23
 
- Gel'fand, I. and Naimark, M., 1943, On the Imbedding of Normed Rings into the Ring of Operators in Hilbert Space, Recueil Mathématique [Matematicheskii Sbornik] Nouvelle Série, 12 [54]: 197-213. [Reprinted in C*-algebras: 1943–1993, in the series Contemporary Mathematics, 167, Providence, R.I. : American Mathematical Society, 1994.]
 
- 24
 
- R. Gilmore: “Lie Groups, Lie Algebras and Some of Their Applications.”, Dover Publs., Inc.: Mineola and New York, 2005.
 
- 25
 
- P. Hahn: Haar measure for measure groupoids., Trans. Amer. Math. Soc. 242: 1–33(1978).
 
- 26
 
- P. Hahn: The regular representations of measure groupoids., Trans. Amer. Math. Soc. 242:34–72(1978).
 
- 27
 
- R. Heynman and S. Lifschitz. 1958. Lie Groups and Lie Algebras., New York and London: Nelson Press.
 
- 28
 
- C. Heunen, N. P. Landsman, B. Spitters.: A topos for algebraic quantum theory, (2008) 
![$arXiv:0709.4364v2 [quant-ph]$ $arXiv:0709.4364v2 [quant-ph]$](http://images.physicslibrary.org/cache/objects/571/l2h/img166.png)  
 
  
 |