Physics Library
 An open source physics library
Encyclopedia | Forums | Docs | Random | Template Test |  
Login
create new user
Username:
Password:
forget your password?
Main Menu
Sections

Meta

Talkback

Downloads

Information
Euler 132 sequence (Definition)

For more info on Euler Sequences, notation and convention see the generic entry on Euler angle sequences.

$R_{132}(\phi, \theta, \psi) = R_2(\psi) R_3(\theta) R_1(\phi) $

The rotation matrices are

$\displaystyle R_2(\psi) = \left[ \begin{array}{ccc} c_{\psi} & 0 & -s_{\psi} \ 0 & 1 & 0 \ s_{\psi} & 0 & c_{\psi} \end{array} \right]$ (1)
$\displaystyle R_3(\theta) = \left[ \begin{array}{ccc} c_{\theta} & s_{\theta} & 0 \ -s_{\theta} & c_{\theta} & 0 \ 0 & 0 & 1 \end{array} \right]$ (2)
$\displaystyle R_1(\phi) = \left[ \begin{array}{ccc} 1 & 0 & 0 \ 0 & c_{\phi} & s_{\phi} \ 0 & -s_{\phi} & c_{\phi} \end{array} \right]$ (3)

Carrying out the matrix multiplication from right to left

$R_3(\theta)R_1(\phi) = \left[ \begin{array}{ccc} c_{\theta} & s_{\theta} & 0 \\... ..._{\phi} & c_{\theta} s_{\phi} \ 0 & -s_{\phi} & c_{\phi} \end{array} \right] $

Finaly leaving us with the Euler 132 sequence

$R_2(\psi)R_3(\theta)R_1(\phi) = \left[ \begin{array}{ccc} c_{\psi} c_{\theta} &... ..._{\phi} & s_{\psi} s_{\theta} s_{\phi} + c_{\psi} c_{\phi} \end{array} \right] $



"Euler 132 sequence" is owned by bloftin.
View style:

Cross-references: matrix multiplication, matrices, Euler angle sequences
There are 2 references to this object.

This is version 1 of Euler 132 sequence, born on 2005-08-02.
Object id is 47, canonical name is Euler132Sequence.
Accessed 793 times total.

Classification:
Physics Classification45.40.-f (Dynamics and kinematics of rigid bodies)
Pending Errata and Addenda
None.
Discussion
Style: Expand: Order:

No messages.

Testing some escape charachters for html category with a generator has an injective cogenerator" now escape ” with "