|
Main Menu
|
Sections
Meta
Talkback
Downloads
Information
|
|
|
|
|
Exposition: Principles of Semiconductor Devices
|
|
Principles of Semiconductor Devices
Authors: Bart Van Zeghbroeck
Uploaded by:
bci1
|
- Comments:
- 255 pages, yr. 2007
- Abstract:
- From the Exposition Contents:
Chapter 1: Quantum basic concepts
Chapter 2: Semiconductor fundamentals
2.1. Introduction
2.2. Crystals and crystal structures
2.2.1. Bravais lattices
2.2.2. Miller indices, crystal planes and directions
2.2.3. Common semiconductor crystal structures
2.2.4. Growth of semiconductor crystals
2.3. Energy bands
2.3.1. Free electron model
2.3.2. Periodic potentials
2.3.3. Energy bands of semiconductors
2.3.4. Metals, insulators and semiconductors
2.3.5. Electrons and holes in semiconductors
2.3.6. The effective mass concept
2.4. Density of states
2.4.1. Calculation of the density of states
2.4.2. Density of states in 1, 2 and 3 dimensions
2.5. Carrier distribution functions
2.5.1. The Fermi-Dirac distribution function
2.5.2. Example
2.5.3. Impurity distribution functions
2.5.4. Other distribution functions and comparison
2.5.5. Derivation of the Fermi-Dirac distribution function
2.6. Carrier densities
2.6.1. General discussion
2.6.2. Calculation of the Fermi integral
2.6.3. Intrinsic semiconductors
2.6.4. Doped semiconductors
2.6.5. Non-equilibrium carrier densities
2.7. Carrier transport
2.7.1. Carrier drift
2.7.2. Carrier mobility
2.7.3. Velocity saturation
2.7.4. Carrier diffusion
2.7.5. The Hall effect
2.8. Carrier recombination and generation
2.8.1. Simple recombination-generation model
2.8.2. Band-to-band recombination
2.8.3. Trap-assisted recombination
2.8.4. Surface recombination
2.8.5. Auger recombination
2.8.6. Generation due to light
2.8.7. Derivation of the trap-assisted recombination
2.9. Continuity equation
2.9.1. Derivation
2.9.2. The diffusion equation
2.9.3. Steady state solution to the diffusion equation
2.10. The drift-diffusion model
2.11 Semiconductor thermodynamics
2.11.1. Thermal equilibrium
2.11.2. Thermodynamic identity
2.11.3. The Fermi energy
2.11.4. Example: an ideal electron gas
2.11.5. Quasi-Fermi energies
2.11.6. Energy loss in recombination processes
2.11.7. Thermo-electric effects in semiconductors
2.11.8. The thermoelectric cooler
2.11.9. The "hot-probe" experiment.
Ch.3: Metal-Semiconductor Junctions
3.6 Metal-Semiconductor Field Effect Transistors (MESFETs)
Ch.4: p-n Junctions
Optoelectronic devices
4.6.1. Photodiodes
4.6.2. Solar cells
4.6.3. LEDs
4.6.4. Laser diodes
Laser diodes
4.10.1. Emission absorption and modal gain
4.10.2. Principle of operation of a laser diode
4.10.3. Longitudinal modes in the laser cavity
4.10.4. Waveguide modes
4.10.5. The confinement factor
4.10.6. The rate equations for a laser diode
4.10.7. Threshold current of multi quantum well laser
4.10.8. Large signal switching of a laser diode
Ch.6: Metal-Oxide-Silicon Capacitors.
Ch.7: MOS Field Effect Transistors
Appendices:
List of Symbols
A.2 Physical constants
A.3 Material parameters
A.4 Prefixes
A.5 Units
A.6 The greek alphabet
A.7 Periodic table
A.8 Numeric answers to selected problems
A.9 Electromagnetic spectrum
A.10 Maxwell's equations
A.11 Chemistry related issues
A.12 Vector calculus
A.13 Hyperbolic functions
A.14 Stirling approximation
A.15 Related optics
A.16 Equation sheet
"
http://ece.colorado.edu/~bart/book/start.htm
- Rights:
-
Open access:
Copyright in 2007 to all material in the directory
http://ece.colorado.edu/~bart/book/start.htm
http://ece-www.colorado.edu/~bart/book/
and all its subdirectories is owned by Bart Van Zeghbroeck.
http://ece.colorado.edu/~bart/book/start.h
- Download:
-
- Links:
|
|
|
|
|
Pending Errata and Addenda
|
|
|
|
|
|
|
|