|
Main Menu
|
Sections
Meta
Talkback
Downloads
Information
|
|
|
|
|
Book: Seminar on Triples and Categorical Homology Theory Lecture Notes in Mathematics, Volume 80
|
|
Seminar on Triples and Categorical Homology Theory Lecture Notes in Mathematics, Volume 80
Authors: Beno Eckmann and Myles Tierney, eds.
Uploaded by:
bci1
|
- Comments:
- 303 pages , Originally published: Lecture Notes in Mathematics, Volume 80, Springer-Verlag, 1969.
- Abstract:
- Seminar on Triples and Categorical Homology Theory
Lecture Notes in Mathematics, Volume 80
Edited by Beno Eckmann and Myles Tierney
Originally published:
Lecture Notes in Mathematics, Volume 80, Springer--Verlag, 1969.
MSC 2000: 18C05, 18C15, 18E25, 18G10
Keywords: Triples, Homology, Equational Categories
Republished in:
Reprints in Theory and Applications of Categories, No. 18 (2008) pp. 1--303.
Authors' Contents:
"Introduction p.6
F. E. J. Linton: An Outline of Functorial Semantics p.11
1. Introduction to algebras in general categories. . . . . . . . . . . . . . 11
2. General plan of the paper. . . . . . . . . . . . . . . . . . . . 15
3. Preliminary structure-semantics adjointness relation. . . . . . . . . . 16
4. Full images and the operational structure-semantics adjointness theorem. . . 19
5. Remarks on Section 4. . . . . . . . . . . . . . . . . . . . . 20
6. Two constructions in algebras over a clone. .. . . . . . . 22
7. Constructions involving triples. . . .. . . . . . . . . . . . . . . 24
8. Codensity triples. . . . . . . . . . . . . . . . . 27
9. The isomorphism theorem . . . . . . . . . . . . . . . . . .. . . . 32
10. Structure and semantics in the presence of a triple. . . . . . . . 36
11. Another proof of the isomorphism theorem . . . . . . . . . 39
F. E. J. Linton: Applied Functorial Semantics, II 44
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 44
1. The precise triple--ableness theorem. . . . . . . . . . . . . . . . . 44
2. When A has enough kernel pairs. . .. . . . . . . . . . . . . . . . 47
3. When A is very like f sets g. . .. . . . . . . . . . 50
4. Proof of Theorem 4. . . . . . . . . . . . . . . . . . . . . . . . . . 53
5. Applications. . . . . . . . . . . . . . . . . . . . 56
F. E. J. Linton: Coequalizers in Categories of Algebras 61
1. Constructions using coequalizers of reflexive pairs. . . . . . . . . . 62
2. Criteria for the existence of such coequalizers. . . . . . . . . . . . . 67
F. E. J. Linton: Coequalizers in Categories of Algebras p.61
Ernest Manes: A Triple Theoretic Construction of Compact Algebras 73
1. Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . 73
2. Algebras over a triple. . . . . . . . . . . . . . . . . . 78
3. Birkhoff subcategories . . . . . . . . . . . . . . . . . . 81
4. The category K(T;eT) .. . . . . . . . . . . . . . . . . . . . . . . 83
5. Compact spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6. Operations . . . . . . . . . . . . . . . . . . . 88
7. Compact algebras . . . .. . . . . . . . . . . . . . . . . . . . . 92
Jon Beck: Distributive Laws 95
1. Distributive laws, composite and lifted triples .
2. Algebras over the composite triple . . . . . . . . . . . . . . . 101
3. Distributive laws and adjoint functors . . . . .. . . . . 104
4. Examples . . . . . . . . . . . . . . . 107
5. Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . 110
F. William Lawvere: Ordinal Sums and Equational Doctrines 113"
http://www.tac.mta.ca/tac/reprints/articles/18/tr18.dvi
http://www.tac.mta.ca/tac/reprints/articles/18/tr18.ps
http://www.tac.mta.ca/tac/reprints/articles/18/tr18.pdf
- Rights:
-
http://www.tac.mta.ca/tac/reprints/articles/18/tr18abs.html
Originally published in : Lecture Notes in Mathematics, Volume 80, Springer-Verlag, 1969. Republished in: Reprints in Theory and Applications of Categories, No. 18 (2008) pp. 1--303.
- Links:
|
|
|
|
|
Pending Errata and Addenda
|
|
|
|
|
|
|
|