|
Main Menu
|
Sections
Meta
Talkback
Downloads
Information
|
|
|
|
|
Book: Basic Concepts of Enriched Category Theory
|
|
Basic Concepts of Enriched Category Theory
Authors: G.M. KELLY, F.A.A. PROFESSOR OF PURE MATHEMATICS, UNIVERSITY OF SYDNEY
Uploaded by:
bci1
|
- Comments:
- Republished in: Reprints in Theory and Applications of Categories, No. 10 (2005), pp. 1-136
- Abstract:
- Basic Concepts of Enriched Category Theory by G.M. Kelly
Originally published as:
Cambridge University Press, Lecture Notes in Mathematics 64, 1982.
Keywords: enriched categories, monoidal categories
2000 MSC: 18-02, 18D10, 18D20
Author's Contents cited:
"Contents
Introduction 1
1 The elementary notions 7
1.1 Monoidal categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 The 2-category V-CAT for a monoidal V . . . . . . . . . . . . . . . . . . . 8
1.3 The 2-functor 0 : V-CAT--->CAT . . . . . . . . . . . . . . . . . . . . 10
1.4 Symmetric monoidal categories: tensor product and duality . . . . . . . . . 11
1.5 Closed and biclosedmonoidal categories . . . . . . . . . . . . . . . . . . . 13
1.6 V as a V-category; representable V-functors . . . . . . . . . . . . . . . . . 15
1.7 Extraordinary V-naturality . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.8 The V-naturality of the canonical maps . . . . . . . . . . . . . . . . . . . . 19
1.9 The (weak) Yoneda lemma for V -CAT . . . . . . . . . . . . . . . . . . . . 21
1.10 Representability of V-functors; V-functor of the passive variables . . . . . . 22
1.11 Adjunctions and equivalences in V -CAT . . . . . . . . . . . . . . . . . . . 23
2 Functor categories 27
2.1 Ends in V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 The functor-category [A, B] for small A . . . . . . . . . . . . . . . . . . . . 29
2.3 The isomorphism [AxB, C]
[A, [B, C]] . . . . . . . . . . . . . . . . . . . 31
2.4 The (strong) Yoneda lemma for V -CAT; the Yoneda embedding . . . . . 33
2.5 The free V-category on a Set-category . . . . . . . . . . . . . . . . . . . . 35
2.6 Universe-enlargement V ⊂ V; [A, B] as a V’-category . . . . . . . . . . . . 35
3 Indexed limits and colimits 37
3.1 Indexing types; limits and colimits; Yoneda isomorphisms . . . . . . . . . . 37
3.2 Preservation of limits and colimits . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Limits in functor categories; double limits and iterated limits . . . . . . . . 40
3.4 The connexion with classical conical limits when V = Set . . . . . . . . . . 42
3.5 Full subcategories and limits; the closure of a full subcategory . . . . . . . 44
3.6 Strongly generating functors . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7 Tensor and cotensor products . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.8 Conical limits in a V-category . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.9 The inadequacy of conical limits . . . . . . . . . . . . . . . . . . . . . . . . 50
3.10 Ends and coends in a general V--category; completeness . . . . . . . . . . . 52
3.11 The existence of a limit--preserving universe--enlargement V ⊂ V . . . . . . 54
v
vi CONTENTS
3.12 The existence of a limit-- and colimit-- preserving universe--enlargement V ⊂ V.. 56
4 Kan extensions 59
4.1 The definition of Kan extensions; their expressibility by limits and colimits 59
4.2 Elementary properties and examples . . . . . . . . . . . . . . . . . . . . . 61
4.3 A universal property of LanK G; its inadequacy as a definition . . . . . . . 64
4.4 Iterated Kan extensions; Kan adjoints; [Aop, V] as the free cocompletion . . 66
4.5 Initial diagrams as the left Kan extensions into V . . . . . . . . . . . . . . 68
4.6 Filtered categories when V = Set . . . . . . . . . . . . . . . . . . . . . . . 71
4.7 Factorization into an initial functor and a discrete op--fibration . . . . . . . 73
4.8 The general representability and adjoint--functor theorems . . . . . . . . . . 75
4.9 Representability and adjoint-functor theorems when V = Set . . . . . . . . 77
4.10 Existence and characterization of the left Kan extension . . . . . . . . . . 80
5 Density 85
5.1 Definition of density, and equivalent formulations . . . . . . . . . . . . . . 85
5.2 Composability and cancellability properties of dense functors . . . . . . . . 87
5.3 Examples of density; comparison with strong generation . . . . . . . . . . 89
5.4 Density of a fully-faithful K in terms of K--absolute colimits . . . . . . . . 92
5.5 Functor categories; small projectives; Morita equivalence . . . . . . . . . . 94
5.6 Left Kan extensions and adjoint functor theorems involving density . . . . 96
5.7 The free completion of A with respect to ... . . . . . . . . . . . . . . . . . 98
5.8 Cauchy completion as the idempotent-splitting completion when V = Set . 100
5.9 The finite--colimit completion when V = Set . . . . . . . . . . . . . . . . . 101
5.10 The filtered-colimit completion when V = Set . . . . . . . . . . . . . . . . 102
5.11 The image under [K, 1] : [C,B]--> [A,B] . . . . . . . . . . . . . . . . . . 104
5.12 Description of the image in terms of K-comodels . . . . . . . . . . . . . . . 106
5.13 A dense K : A-->C as an essentially-algebraic theory . . . . . . . . . . . 109
5.14 The image under [K, 1] : [C, B]---> [A, B] . . . . . . . . . . . . . . . . . . . 110
6 Essentially-algebraic theories defined by reguli and by sketches 113
6.1 Locally-bounded categories; the local boundedness of V . . . . . . . . . . . 113
6.2 The reflectivity in [Aop, V] of the category of algebras for a regulus . . . . . 115
6.3 The category of algebras for a sketch . . . . . . . . . . . . . . . . . . . . . 118
6.4 The F-theory generated by a small sketch . . . . . . . . . . . . . . . . . . 122
6.5 Symmetric monoidal closed structure on F-cocomplete categories . . . . . 124
Bibliography 125
Index 131
Republished in:
Reprints in Theory and Applications of Categories, No. 10 (2005) pp. 1-136
http://www.tac.mta.ca/tac/reprints/articles/10/tr10.dvi
http://www.tac.mta.ca/tac/reprints/articles/10/tr10.ps
http://www.tac.mta.ca/tac/reprints/articles/10/tr10.pdf
TAC Reprints Home
Received by the editors 2004-10-30.
Transmitted by Steve Lack, Ross Street and RJ Wood. Reprint published on 2005-04-23.
2000 Mathematics Subject Classification: 18-02, 18D10, 18D20.
Key words and phrases: enriched categories, monoidal categories.
Originally published by Cambridge University Press, London Mathematical Society Lecture
Notes Series 64, 1982
@G.M. Kelly, 2005. Permission to copy for private use granted."
- Rights:
-
Originally published as: Cambridge University Press, Lecture Notes in Mathematics 64, 1982. Republished in:
Reprints in Theory and Applications of Categories, No. 10 (2005) pp. 1--136
http://www.tac.mta.ca/tac/reprints/articles/10/tr10.dvi
http://www.tac.mta.ca/tac/reprints/articles/10/tr10.ps
@Kelly, 2005.
http://www.tac.mta.ca/tac/reprints/articles/10/tr10.pdf
TAC Reprints Home
- Links:
|
|
|
|
|
Pending Errata and Addenda
|
|
|
|
|
|
|
|