|
Main Menu
|
Sections
Meta
Talkback
Downloads
Information
|
|
|
|
|
Book: Non-Equilibrium Statistical Mechanics
|
|
Non-Equilibrium Statistical Mechanics
Authors: Klaus Schulten and Ion Kosztin, Department of Physics and Beckman Institute,UIUC
Uploaded by:
bci1
|
- Comments:
- 211 PAGES, 2000, 3 mB pdf
- Abstract:
- Contents
1 Introduction 1
2 Dynamics under the Influence of Stochastic Forces 3
2.1 Newton's Equation and Langevin's Equation . . . 3
2.2 Stochastic Differential Equations .4
2.3 How to Describe Noise . . . . 5
2.4 Ito calculus . . . . . . . . . . . . . 21
2.5 Fokker-Planck Equations . . . . . . . . . . . . . . 29
2.6 Stratonovich Calculus . . . . . . . . . . 31
2.7 Appendix: Normal Distribution Approximation . . . 34
2.7.1 Stirling's Formula . .. . . . . 34
2.7.2 Binomial Distribution . . . .. . . 34
3 Einstein Diffusion Equation 37
3.1 Derivation and Boundary Conditions . . . . . . . . 37
3.2 Free Diffusion in One-dimensional Half-Space . . 40
3.3 Fluorescence Microphotolysis . . . . . . . . . 44
3.4 Free Diffusion around a Spherical Object . . . . . . 48
3.5 Free Diffusion in a Finite Domain . . . . . . . . . . .57
3.6 Rotational Diffusion . . . . . . . . . 60
4 Smoluchowski Diffusion Equation 63
4.1 Derivation of the Smoluchoswki Diffusion Equation for Potential Fields . . . . . . . 64
4.2 One-Dimensional Diffusion in a Linear Potential . . . . . . . . . . . . . . . . . . . . . 67
4.2.1 Di
usion in an infinite space 67
4.2.2 Difusion in a Half-Space
70
4.3 Diffusion in a One-Dimensional Harmonic Potential . 74
5 Random Numbers 79
5.1 Randomness . . . . . .. 80
5.2 Random Number Generators . . . . . . . . 83
5.2.1 Homogeneous Distribution . . . . . 83
5.2.2 Gaussian Distribution . . . 86
5.3 Monte Carlo integration . . . . . .. . . 88
i
ii CONTENTS
6 Brownian Dynamics 91
6.1 Discretization of Time . . . . 91
6.2 Monte Carlo Integration of Stochastic Processes . . . . . . . . . . . . . . . . . . . . . 93
6.3 Ito Calculus and Brownian Dynamics . . . . . 95
6.4 Free Diffusion . .. . . . . . . . 96
6.5 Reflective Boundary Conditions . . .100
7 The Brownian Dynamics Method Applied 103
7.1 Diffusion in a Linear Potential . 103
7.2 Diffusion in a Harmonic Potential . . . 104
7.3 Harmonic Potential with a Reactive Center . . . . . 107
7.4 Free Diffusion in a Finite Domain . . . . 107
7.5 Hysteresis in a Harmonic Potential . . . 108
7.6 Hysteresis in a Bistable Potential . . . 112
8 Noise-Induced Limit Cycles 119
8.1 The Bonhoefer--van der Pol equations . . . . . . . . 119
8.2 Analysis . 121
8.2.1 Derivation of Canonical Model . . 121
8.2.2 Linear Analysis of Canonical Model . . . 122
8.2.3 Hopf Bifurcation Analysis . . . . 124
8.2.4 Systems of Coupled Bonhoeffer{van der Pol Neurons . . 126
8.3 Alternative Neuron Models .. . . . 128
8.3.1 Standard Oscillators . . 128
8.3.2 Active Rotators . . . . . . . 129
8.3.3 Integrate-and-Fire Neurons . . . 129
8.3.4 Conclusions . .. . . . . . . . . . 130
9 Adjoint Smoluchowski Equation 131
9.1 The Adjoint Smoluchowski Equation . . . . . 131
9.2 Correlation Functions . . . .. . . . . . . 135
10 Rates of Diffusion-Controlled Reactions 137
10.1 Relative Diffusion of two Free Particles . . . . . 137
10.2 Diffusion-Controlled Reactions under Stationary Conditions . 139
10.2.1 Examples . . . . . . . . . . . . 141
11 Ohmic Resistance and Irreversible Work 143
12 Smoluchowski Equation for Potentials: Extremum Principle and Spectral Expansion 145
12.1 Minimum Principle for the Smoluchowski Equation . . . . 146
12.2 Similarity to Self-Adjoint Operator . . 149
12.3 Eigenfunctions and Eigenvalues of the Smoluchowski Operator . 151
12.4 Brownian Oscillator . . . . . . . . . . . . 155
13 The Brownian Oscillator 161
13.1 One-Dimensional Diffusion in a Harmonic Potential . . 162
http://www.ks.uiuc.edu/Services/Class/PHYS498/LectureNotes.html
http://www.ks.uiuc.edu/Services/Class/NSM.pdf
- Rights:
-
Open access and free online download at:
http://www.ks.uiuc.edu/Services/Class/PHYS498/LectureNotes.html
http://www.ks.uiuc.edu/Services/Class/NSM.pdf
- Links:
|
|
|
|
|
Pending Errata and Addenda
|
|
|
|
|
|
|
|