|
Main Menu
|
Sections
Meta
Talkback
Downloads
Information
|
|
|
|
|
|
Lie algebras
Authors: Shlomo Sternberg, Professor at Harvard University, Mathematics Dept.
Uploaded by:
bci1
|
- Comments:
- 198 pages, 900kb, year 2004
- Abstract:
- An excellent, intermediate to advanced textbook on Lie algebras for theoretical and mathematical physicists. This recent book covers the most important aspects of Lie algebras for quantum physicists and 'elementary particle physics', such as:
sl(2) and its Representations. p. 35
2.1 Low dimensional Lie algebras. . . . . . 35
2.2 sl(2) and its irreducible representations. . 36
2.3 The Casimir element. . . . 39
2.4 sl(2) is simple. . . . . 40
2.5 Complete reducibility. . . . . 41
2.6 The Weyl group. . . 42
The universal enveloping algebra. . . . . . . . . . . . . . . . . . . 19
8 Serre’s theorem. 137
8.1 The Serre relations. . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.2 The first five relations. . . . . . . . . . . . . . . . . . . . . . . . . 138
8.3 Proof of Serre's theorem. . . . . . 142
8.4 The existence of the exceptional root systems. . . 144
9 Clifford algebras and spin representations. 147
9.1 Definition and basic properties . . . . . . 147
9.1.1 Definition. . . . . . . . . . . 147
9.1.2 Gradation. . . . . . . . . . . . . 148
9.1.3 A C(p) module. . . . . . . 148
9.1.4 Chevalley's linear identification of C(p) p. 148
9.1.5 The canonical antiautomorphism. . . . . . . . 149
9.1.6 Commutator by an element of p. . . . . . . 150
9.1.7 Commutator by an element of 2p. . . . . . . . 151
9.2 Orthogonal action of a Lie algebra. . . . . . 153
9.2.1 Expressions in terms of dual bases. . . . . . . . . . . 153
9.2.2 The adjoint action of a reductive Lie algebra. . . . . . . . 153
9.3 The spin representations. . . . . .. 154
9.3.1 The even dimensional case. . . . . . 155
9.3.2 The odd dimensional case. . . . . .158
9.3.3 Spin and V p.159
10 The Kostant Dirac operator 163
10.1 Antisymmetric trilinear forms. 164
10.3 Orthogonal extension of a Lie algebra. . . . 165
10.4 The value of [v2 + l(Casr)]0. . . . . 167
10.5 Kostant's Dirac Operator. . . . . 169
10.6 Eigenvalues of the Dirac operator. . . . 172
10.7 The geometric index theorem. . . . . . 178
10.7.1 The index of equivariant Fredholm maps. . 178
10.7.2 Induced representations and Bott's theorem. . . . . . . . 179
10.7.3 Landweber's index theorem. . . . . .
1.8.1 Tensor product of vector spaces. . . . 20
1.8.2 The tensor product of two algebras. . . . . . . . . . . . . 21
1.8.3 The tensor algebra of a vector space. . . . . . . . . . . . . 21
1.8.4 Construction of the universal enveloping algebra. . 22
1.8.5 Extension of a Lie algebra homomorphism to its universal
enveloping algebra. . . . . 22
1.8.6 Universal enveloping algebra of a direct sum. 22
1.8.7 Bialgebra structure. . . . .. . 23
1.9 The Poincar\'e-Birkhoff-Witt Theorem. . . . . . . 24
1.10 Primitives. . .. 28
1.11 Free Lie algebras . .
Online free 900kb download at:
http://www.math.harvard.edu/~shlomo/docs/lie_algebras.pdf
- Rights:
-
http://www.math.harvard.edu/~shlomo/docs/lie_algebras.pdf
Open access
- Links:
ISBN #:
|
|
|
|
|
Pending Errata and Addenda
|
|
|
|
|
|
|
|